Gasification of Biomass

Lyman Frost Western Hydrogen LTD Ceramatec, Inc

Typical Coal Gasification Unit

Fig. 14 Schematic of a typical gas cleanup system for an entrained-flow oxygen-blown gasifier.

Typical plants: Cool Water - 1000 tpd, 92 MW; Buggenum - 2000 tpd, 250 MW

Heat rate/efficiency: Cool Water – 9060 / ~38%; Buggenum – 8000 / ~43 %

Typical Process Flow – Biomass

Biomass Gasifier Problems

- Formation of refractory tars and oils
 - Viscous, sticky, smelly, and carcinogenic
 - Refractory materials that are difficult to reform
 - Condensing tars gum up engines & turbines
 - Tar poisons catalysts (Biomass to liquids)
 - Tar represents lost energy
- Tar removal
 - Toxic soluble fraction (phenols) in scrubbing water
 - Produces a hazardous waste disposal stream
 - Can condense the tars for disposal

Condense and Reform Tars & Oils

Directly Reform Tars & Oils

Test of In-situ Reforming

- Emery Energy 10 TPD biomass gasifier
- Ceramatec non-thermal plasma catalyzed reformer
- Located at Western Research Institute, Laramie, WY

Another Option – Molten Salt Gasifier

Currently Constructing Pilot

- ~ 200,000 SCF/d H₂
- Operates at:
 - 2000 psi
 - ~900 deg C

Pilot & Demo Plant Location

- Biomass gasification based on previous technology
- Unique problem is the formation of refractory tars and oils
- Methods to address that formation
 - Condense and dispose
 - Condense and reform
 - In-situ reforming
 - High pressure high temperature gasification